OBSERVATIONS ON THE BIQUADRATIC WITH FIVE UNKNOWS

$$x^4 - y^4 - 2xy(x^2 - y^2) = z(X^2 + Y^2)$$

S.Vidhyalakshmi*

M.A.Gopalan*

A.Kavitha*

Abstract:

We obtain infinitely many non-zero integer quintuples (x, y, z, X, Y) satisfying the biquadratic equation with five unknowns $x^4 - y^4 - 2xy(x^2 - y^2) = z(X^2 + Y^2)$. Various interesting properties between the values of x, y, z, X, Y and special number patterns, namely, polygonal numbers, centered pyramidal and polygonal numbers, Jacob-lucas numbers and kynea numbers are presented.

Key words: biquadratic equation with five unknowns, integral solutions, polygonal numbers, centered figurate numbers.

MSC 2000 Mathematics subject classification:11D25.

Notations:

 $T_{m,n}$ = Polygonal number of rank n with size m.

 P_n^m = Pyramidal number of rank n with size m.

 CP_n^m = Centered pyramidal number of rank n whose generating polygon has m sides.

 S_n = Star number of rank n

* Department of Mathematics, Shrimati Indira Gandhi College, Trichy- 620 002.

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

 j_n = Jacobsthal-Lucas number of rank n

 ky_n = kynea number of rank n

 $F_{4,n,5}$ = Four dimensional pentagonal figurate number of rank n.

Introduction:

Biquadratic Diophantine equations, homogeneous and non-homogeneous, have aroused the interest of numerous Mathematicians since ambiguity as can be seen from

[1-7]. Particularly in [8,9] biquadratic diophantine equations with five unknowns are analysed for their non-zero integral solutions. In this paper, another interesting biquadratic equation with five unknowns given by $x^4 - y^4 - 2xy(x^2 - y^2) = z(X^2 + Y^2)$

is considered and five different patterns of integral solutions are illustrated. A few interesting properties between the solutions and special number patterns are exhibited.

Method of analysis:

The biquadratic with five unknown is

$$x^{4} - y^{4} - 2xy(x^{2} - y^{2}) = z(X^{2} + Y^{2})$$
 (1)

It is seen that (1) is satisfied by the quintuple $(u + 2ab, u - 2ab, 16uab, 2a^2 - b^2, 2a^2 + b^2)$.

However, we have other patterns of solutions to (1) which are illustrated as follows.

Introduction of the transformations

$$x = u + v, \quad y = u - v, \quad z = 8uv \tag{2}$$

in (1) leads to
$$X^2 + Y^2 = 2v^2$$
 (3)

Volume 2, Issue 2

We present below different methods of solving (3) and thus, in view of (2), one obtains different patterns of solution to (1).

Pattern:1

$$Let v = a^2 + b^2 \tag{4}$$

Write 2 as

$$2 = (1+i)(1-i) \tag{5}$$

Using (4) and (5) in (3) and applying the methods of factorization, define

$$X + iY = (1+i)(a+ib)^2$$

$$X - iY = (1 - i)(a - ib)^2$$

Equating real and imaginary parts, we have

$$X = a^2 - b^2 - 2ab$$

$$Y = a^2 - b^2 + 2ab$$

(6)

Using (4) in (2), it is seen that

$$x = u + a^{2} + b^{2}$$

$$y = u - a^{2} - b^{2}$$

$$z = 8u(a^{2} + b^{2})$$
(7)

Thus (6) and (7) represent the non-zero distinct integral solutions to (1).

Properties:

- (i) z(x+y) is a sum of two squares.
- (ii) 6 [(u, a, 1) y(u, a, 1) + 2X(a, 1) + 1] is a nasty number
- (iii) $z(1,a,1) k(1,a,1) + y(1,a,1) t_{34,a} \equiv 1 \pmod{15}$
- (iv) $x(1,a,1) + y(1,a,1) + z(1,a,1) t_{18,a} \equiv 3 \pmod{7}$
- (v) 2X(a,b) + 2Y(a,b) is a difference of two squares.
- (vi) $X(2a,1) + Y(2a,1) t_{3,4a} + 2 \equiv 0 \pmod{2}$
- (vii) $z(a, a, 1) 3CP_a^{16} \equiv 0 \pmod{6}$
- (viii) $z(\alpha^2, \alpha^2, 1) 3CP_{\alpha^2}^{16}$ is a nasty number
- (ix) $x(u, n, 3) y(u, n, 3) + X(n, 3) 2CP_{12,n} + 1 \equiv 0 \pmod{9}$
- (x) $y(-4n,-1,2n) + Y(-1,2n) + CP_{16,n} = 1$

Pattern:2

Write (3) as
$$2v^2 - Y^2 = X^2 *1$$
 (8)

$$Let X = 2a^2 - b^2 (9)$$

Write 1 as

$$1 = (\sqrt{2} + 1)(\sqrt{2} - 1) \tag{10}$$

Substituting (9) and (10) in (8) and employing the factorization method, define

$$\sqrt{2}v + Y = (\sqrt{2}a + b)^2(\sqrt{2} + 1)$$

Equating the rational and irrational parts, we get

$$Y = 2a^2 + b^2 + 4ab (11)$$

$$v = 2a^2 + b^2 + 2ab \tag{12}$$

Using (12) in (2), we have,

$$x = u + 2a^{2} + b^{2} + 2ab$$

$$y = u - 2a^{2} - b^{2} - 2ab$$

$$z = 8u(2a^{2} + b^{2} + 2ab)$$
(13)

Thus (9), (11) and (13) represent the non-zero distinct integral solutions to (1).

Properties:

- (i) 10 [(1,a,b) y(1,a,b) + z(1,a,b) + 10] is a sum of two squares.
- (ii) 6 (u,a,1) y(u,a,1) 1 is a nasty number.

(iii)
$$x(u,1,2^{2n}) - y(u,1,2^{2n}) = 2j_{4n} + j_{2n+2} + 1$$

(iv)
$$x(u,1,2^{2n+1}) - y(u,1,2^{2n+1}) = 2j_{4n+2} + j_{2n+3} + 3$$

(v)
$$\{(n,1) \mid Y(n,1) \mid Y(n,1) \mid (1,1) \mid (2CP_n^{12} + 4t_{3,n} + 2t_{6,n} - 4t_{4,n} = 1\}$$

(vi)
$$z \cdot (n, 1) = 6CP_n^{17} + 2CP_n^3 - 12t_{21,n} + 2t_{5,n} \equiv 0 \pmod{36}$$

(vii)
$$z(1,n) + x(1,n) + y(1,n) + Y(n) + CP_{14,n} \equiv 0 \pmod{5}$$

(viii)
$$\{ (n,1) \ge u \} \{ (n,1)$$

Pattern:3

Instead of (10), we write 1 as

Volume 2, Issue 2

$$1 = \frac{\sqrt{2} + 1\sqrt{2} - 1}{49}$$

Following the procedure as presented in pattern 2, the corresponding non zero distinct integral solutions to (1) are obtained as

$$x = u + 7 (0A^{2} + 5B^{2} + 2AB)$$

$$y = u - 7 (0A^{2} + 5B^{2} + 2AB)$$

$$z = 56u (0A^{2} + 5B^{2} + 2AB)$$

$$X = 7 (4A^{2} - 7B^{2})$$

$$Y = 14A^{2} + 7B^{2} + 140AB$$

Properties:

(i)
$$x \cdot (A, A, 1) = y \cdot (A, 1) = 28t_{3,2A} = 70 \pmod{84}$$

(ii)
$$x \cdot (A, A, 1) = y \cdot (A, A, 1) = 28t_{3,2A} - 14t_{14,A} \equiv 0 \pmod{5}$$

(iii)
$$X (2^n, 2^n) = 49j_{4n+1} - 49ky_n + 98(n - (1)^n)$$

(iv)
$$\sqrt{(x-y)} = 7\sqrt{(x+y)^2}$$
 is a nasty number

(v)
$$z (A,1 - 8X (A,1 - x (A,1 + y (A,1 = 14) 2t_{3A} + 53)$$

(vi)
$$x \in n, 1 = 4CP_{29,n} \equiv 32 \pmod{44}$$

(vii)
$$x \cdot (1, n) = y(u, 1, n) - 2X \cdot (n) + 2Y \cdot (n) - 14CP_{28,n} + 14CP_{16,n} - 28t_{9,n} \equiv -2 \pmod{21}$$

(viii)
$$X (-1) + Y (-1) - 42CP_n^{26} - 42CP_n^{28} + 21CP_n^4 + 14CP_{15,n} + 14t_{3,n} \equiv -8 \pmod{39}$$

(ix)
$$x(1,n,n^2) + Y(n^2) = 14 \left[4F_{4,n,5} + 2CP_n^3 - 6t_{3,n} \right] = 1$$

Pattern:4

Again, choosing 1 as

$$1 = \frac{(9\sqrt{2} + 1)(9\sqrt{2} - 1)}{41^2}$$

and repeating the process similar to pattern 2, the corresponding non-zero distinct integral solutions to (1) are found to be

$$x = u + 41 (8A^{2} + 29B^{2} + 2AB)$$

$$y = u - 41 (8A^{2} + 29B^{2} + 2AB)$$

$$z = 328u (8A^{2} + 29B^{2} + 2AB)$$

$$X = 41 (2A^{2} - 41B^{2})$$

$$Y = 41 (A^{2} + B^{2} + 116AB)$$

Properties:

(i)
$$\frac{x(u,A,1) - y(u,A,1) - X(A,1) + Y(A,1) - 1312t_{3,A} - 1640t_{3,A+1}}{164} \equiv 4 \pmod{1}$$

(ii)
$$z(1,A,B)$$
 $\{ (A,B) - y (1,A,B) \}$ is a perfect square.

(iii)
$$x(1,2^{2n},1) - y(1,2^{2n},1) = 82 \left[9j_{4n+1} + j_{2n+1} + 59 \right]$$

(iv)
$$x(1,2^{2n+1},1) - y(1,2^{2n+1},1) = 82 29 j_{4n+3} + j_{2n+2} + 57$$

(v)
$$z(1,2^{2n},1) = 328 \left[9j_{4n+1} + j_{2n+1} + 59 \right]$$

(vi)
$$z(1,2^{2n+1},1) = 328 29 j_{4n+3} + j_{2n+2} + 57$$

(vii)
$$Y(n,-1) - 41(t_{16,n} - CP_{24,n} + CP_{14,n}) \equiv 41 \pmod{4305}$$

(viii)
$$X(n,1) = 41^2 (CP_{4,n} + t_{6,n} - 2t_{4,n} - 2t_{3,n} - 2)$$

(ix)
$$x(u, n^2, 1) - y(u, n^2, 1) - X(n^2, 1) - 41 \left[t_{23,n} + CP_{26,n} + CP_{20,n} - 10t_{4,n} \right] = 3977$$

Pattern:5

Consider the transformations

$$x = u + v$$
, $y = u - v$, $z = 4uv$, $X = p + q$, $Y = p - q$, (14)

Using(14) in (1), we have,

$$p^2 + q^2 = 2v^2$$

Which is satisfied by

$$p = a^2 - b^2 - 2ab$$

$$q = a^2 - b^2 + 2ab$$

$$v = a^2 + b^2$$

Substitute the above values of p, q, v in (14),the non-zero distinct integral solutions to (1) are represented by

$$x = u + a^2 + b^2$$

$$y = u - a^2 - b^2$$

$$z = 4u(a^2 + b^2)$$

$$X = 2a^2 - 2b^2$$

$$Y = -4ab$$

Properties:

- (i) X(1,3) Y(1,3) + x(u,1,3) y(u,1,3) is a perfect square
- (ii) 6[x(u,a,b) y(u,a,b) + X(a,b)] is a nasty number
- (iii) $X(a,1) Y(a,1) + x(1,a,1) y(1,a,1) = 8t_{3,a}$
- (iv) $z(u, a, b) \cdot (u, a, b) + y(u, a, b) = 0 \pmod{8}$

(v)
$$x(u,a,1) - y(u,a,1) + X(a,1) + Y(a,1) = 2t_{6,a} - 2a$$

- (vi) $Y(-a, a(a+1)) = 8P_a^5$
- (vii) $6Y(-a, a-1) = 4S_a 4$
- (viii) $Y(a,1) v(u,a,1) u 6CP_a^8 \equiv 0 \pmod{5}$
- (ix) 13Y(a,1) $v(u,a,1) u 24CP_a^{13} \equiv 0 \pmod{80}$
- (x) $Y(n,1) = (1,n,1) y(1,n,1) + z(1,n,1) = 6CP_n^{24} \equiv 0 \pmod{42}$
- (xi) $X(1,n)Y(1,n) 3CP_n^{16} \equiv 0 \pmod{3}$

Conclusion:

One may search for other patterns of integral solutions to (1) and their corresponding properties.

References:

- [1]. Dickson. L.E., History of the Theory of Numbers, Vol 2:Diophantine Analysis, New York, Dover, 2005.
- [2]. Mordell, L.J, Diophantine Equations, Academic Press, London(1969).
- [3]. Carmichael, R.D., The theory of numbers and Diophantine Analysis, New york, Dover, 1959.
- [4]. Lang, S.Algebraic N.T., Second ed. New York: Chelsea, 1999.
- [5]. Weyl, H. Algebraic theory of numbers, Princeton, NJ: Princeton University press, 1998.
- [6]. Oistein Ore, Number Theory and its History, New York, Dover, 1988.
- [7]. T.Nagell, Introduction to Number theory, Chelsa(New York)1981.
- [8]. M.A.Gopalan and J.Kaliga Rani, Quartic equation in 5 unknowns

 $x^4 - y^4 = 2(z^2 - w^2)p^2$, Bulletin of Pure and Applied Sciences, Vol28E(No:2), 2009,p:305-11.

[9]. M.A.Gopalan and J.Kaliga Rani, Quartic equations in 5 unknowns

 $x^4 - y^4 = (z + w)p^3$, Bessel J.Math., Vol. 1(1), 2011, p:49-57.